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A B S T R A C T

Accurate wind speed prediction is crucial for enhancing the stability and economic efficiency of power system
operation, particularly in wind power grid integration. However, existing methods face challenges as they fail to
explicitly model local and long-range spatial correlations simultaneously, thereby limiting the performance of
wind speed prediction to a certain extent. To overcome these challenges, this study develops a novel method,
namely, LLConvLSTM, from the perspective of modeling local and long-range spatial correlations in wind
speed, which leverages Deformable Convolution V2 and Coordinate Attention for multi-step spatiotemporal
wind speed prediction. A ConvLSTM encoder–decoder architecture is designed for end-to-end spatiotemporal
wind speed prediction. The Residual Deformable Convolution Module (RDCM) increases additional offsets
and modulation scales in the spatial sampling locations, enhancing the capability to capture local spatial
correlations. Dense Coordinate Attention Module (DCAM) embeds spatial positional information into the
channel attention. DCAM improves the representability of long-range spatial correlations. Experimental results
based on wind speed data from 253 virtual wind turbines demonstrate that the proposed approach significantly
outperforms existing methods throughout the entire year and months. Moreover, the proposed method achieves
Mean Squared Error (MSE) of 0.1199, 0.3446 and 0.5798 for multi-step wind speed prediction, representing
reductions of 22.47% to 40.91% compared with existing methods. These findings highlight the significance
of modeling local and long-range spatial correlations in enhancing the accuracy and stability of wind speed
prediction. Future research will design a universal method capable of handling turbine data from any location
and emphasize long-term forecasting in wind speed prediction.
1. Introduction

At present, traditional fossil fuels are still important resources that
are commonly used (Prema et al., 2021). The excessive use of fossil
fuels has led to a sudden increase in carbon emissions, which has
exacerbated the greenhouse effect, causing severe pollution to the
environment (Sibtain et al., 2022). Unlike fossil fuels, wind energy,
as a green, low-carbon, pollution-free renewable energy (Yang et al.,
2022), has attracted widespread attention. Wind energy power gen-
eration is one of the ways to use wind energy, which can effectively
alleviate environmental pollution. However, the wind speed has intense
intermittent, volatility and randomness (Ewees et al., 2022), which
dramatically affects the stable operation of the power system in the
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wind power grid. Accurate wind speed prediction helps dispatch the
power system reasonably, thereby achieving a stable supply and de-
mand balance, reducing the economic risks of wind power generation,
and improving the availability of wind energy (Zhang et al., 2022).
Therefore, improving the accuracy of wind speed prediction is of great
significance to promoting the large-scale application of wind power
generation.

Wind speed data observed at a turbine are not only relevant to
its own historical wind speed data (i.e., temporal correlations), but
also to wind speed data from other turbines within a specific range
(i.e., spatial correlations). By simulating the spatiotemporal variability
of wind energy, the model can better characterize the spatiotemporal
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Fig. 1. The wind farm can be designed as a multi-channel gridded image with spatiotemporal features. Among them, each pixel indicates a virtual wind turbine in a space. To
facilitate the presentation of feature variations, the multi-channel gridded image is converted to color by applyColorMap in the OpenCV library.
Fig. 2. Wind speed flows of Turbine A and Turbine B show similar wind speed flow dynamics. Likewise, Wind speed flows of Turbine A and Turbine C also show similar wind
speed flow dynamics.
correlations of wind speed between different locations and then effec-
tively improve the accuracy of wind speed prediction (Zhu et al., 2018).
Fig. 1 shows that the wind farm can be designed as a multi-channel
gridded image with spatiotemporal characteristics. Among them, each
pixel indicates an virtual wind turbine in a space. Fig. 2 (left) shows a
visual image with gridded wind speed data with size 16 × 16. Three
turbines are selected and the wind speed variation relationships for
these turbines are observed as shown in Fig. 2 (right). Turbine A and
Turbine B are outside the normal adjacent locations, but they show
similar wind speed flow dynamics, reflecting local spatial correlations.
Similarly, the wind speed for Turbine A and Turbine C at distant
locations shows similar flow dynamics, which denotes the existence of
long-range spatial correlations.

However, convolution with a fixed geometric structure cannot cap-
ture the varying relationships between the two turbines, which results
in the loss of valid information. Additionally, convolution is challenging
to extract long-range spatial location information features. Existing
wind speed prediction studies, including physical methods, statisti-
cal methods, machine learning methods and deep learning methods,
employ various techniques to improve the accuracy of wind speed
prediction. However, they have not adequately addressed the modeling
of local and long-range spatial correlations in spatiotemporal wind
speed prediction.

This study proposes feasible strategies to address these challenges
from two perspectives: local spatial correlations and long-range spatial
2

correlations, respectively. To extract local spatial correlations, the De-
formable Convolution V2 (DCNv2) (Zhu et al., 2019) augments the 2-D
spatial sampling locations with additional offsets to adaptively learn the
offsets and modulation amplitudes from the spatial wind speed flow.
To construct long-range spatial correlations, the study proposes the
utilization of Coordinate Attention (CA) (Hou et al., 2021). Specifically,
CA enhances the representation of long-range spatial correlations by
embedding the spatial location information of all turbines into channel
attention.

Based on the above analysis, the study combines the advantages
of Deformable Convolution V2 and Coordinate Attention, proposes
a novel ConvLSTM multi-step spatiotemporal wind speed prediction
approach, namely, LLConvLSTM, which achieves superior experimental
results. Wherein, ConvLSTM encoder–decoder architecture is designed
to model the spatiotemporal correlations for achieving end-to-end wind
speed prediction. ConvLSTM encoder part extracts the features from
the wind speed sequence and encodes them into hidden state and cell
state. The prediction sequence is then generated through the decoder
part. Residual Deformable Convolution Module (RDCM) incorporates
Deformable Convolution V2, which accurately characterizes the local
spatial correlations. At the same time, Dense Coordinate Attention
Module (DCAM) integrates coordinate attention to enhance the ability
to sense long-range spatial correlations. This study fully tests the wind
speed data of 253 virtual wind turbines. The experimental results show
that LLConvLSTM model is significantly better than existing meth-
ods (Potter and Negnevitsky, 2006; Harbola and Coors, 2019; Kisvari
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et al., 2021; Shen et al., 2022; Liao et al., 2021; Kusiak and Zhang,
2010; Lahouar and Slama, 2017; Velo et al., 2014). The prediction
results of LLConvLSTM are closer to the actual value. Ablation exper-
iments further demonstrate that modeling local and long-range spatial
correlations could improve performance. The main contributions of this
work are as follows:

(1) Based on ConvLSTM encoder–decoder architecture, the study
proposes a novel ConvLSTM multi-step spatiotemporal wind speed
prediction approach to better realize end-to-end prediction.

(2) Design new RDCM and DCAM can effectively construct local
spatial correlations and capture long-range spatial correlations to im-
prove the prediction performance further. This is the first paper to
model local and long-range spatial correlations in a deep learning-based
spatiotemporal wind speed prediction approach.

(3) Extensive experiments are conducted on wind speed data from
253 virtual wind turbines, and the results show that the proposed ap-
proach is superior to state-of-the-art spatiotemporal predictive models.
Moreover, ablation experiments further verified the validity of designed
components in LLConvLSTM.

2. Literature review

2.1. Methods for wind speed prediction

At present, researchers have developed various wind speed forecast-
ing methods, including physical methods, statistical methods, machine
learning methods and deep learning methods.

Physical methods use historical wind speed time series and multiple
meteorological factors to achieve wind speed forecasting (Jung and
Broadwater, 2014). The most widely used is the numerical weather
forecasting (NWP) model (Nor et al., 2014). However, NWP is sus-
ceptible to non-stationary and extreme factors and cannot provide
reliable wind speed prediction (Zhang et al., 2020) in complex areas.
Statistical methods usually refer to time series models, including au-
toregressive model (AR), moving average model (MA), autoregressive
moving average model (ARMA) (Erdem and Shi, 2011), autoregressive
integrated moving average model (ARIMA) (Yunus et al., 2015) and
its derivative models. However, various uncertainties in wind speed
prediction significantly limit the ability to process nonlinear wind speed
data for statistical methods.

Machine learning methods are always more promising than physical
and statistical methods because of their potential feature extraction
capability (Daut et al., 2017). Hao et al. (2021) used improved grey
wolf optimization (IGWO) algorithm to optimize parameters of gra-
dient boosting regression tree (GBRT) to achieve wind speed predic-
tion. Yesilbudak et al. (2013) used 𝑘-nearest neighbor (𝑘-NN) classi-
fication model with various distance metrics to predict wind speed
parameters in an n-tuples input. Yu and Vautard (2022) developed
a transfer method for calculating 100 m wind speed using random
forests (RF). Liu et al. (2013) developed a hybrid model based on
wavelet transform, genetic algorithm (GA), particle swarm optimization
(PSO), and multilayer perceptron (MLP) to achieve accurate wind speed
prediction. Yeganeh-Bakhtiary et al. (2022) developed a supervised
machine learning method, specifically the M5’Decision Tree model,
to establish a statistical relationship between predictor and predic-
tand. The capabilities of the M5’Decision Tree model were examined
to predict future wind speed and identify spatiotemporal trends in
wind characteristics. Peláez-Rodríguez et al. (2022) introduced a novel
method for predicting extreme wind speed events using hierarchical
classification/regression (HCR) techniques, aiming to enhance the pre-
diction accuracy of extreme wind speed events across various machine
learning methods.

However, training these machine learning models requires
researchers to extract features manually, relying on priority knowledge
in related fields. It is unreliable in practical application scenarios to
select suitable features only by hand. Considering the complex and
3

non-stationary characteristics of wind speed, the modeling process
of machine learning is complicated, and the model’s generalization
ability is limited. Therefore, machine learning methods have significant
limitations in wind speed prediction.

Deep learning has been widely used in wind speed prediction as a
novel artificial intelligence technology. Memarzadeh and Keynia (2020)
used the crow search algorithm (CSA) to optimize the structure of
long short-term memory (LSTM), thereby improving the accuracy and
speed of short-term wind speed prediction. Dolatabadi et al. (2020)
developed a hybrid model integrating discrete wavelet packet trans-
form (DWPT) and bidirectional long short-term memory (Bi-LSTM)
for learning the internal temporal relationship of wind speed time
series. Shen et al. (2022) explored a hybrid model based on CNN-LSTM
for multi-step wind speed prediction and proved that the hybrid model
is superior to a single model in terms of accuracy and stability. Gan
et al. (2021) used an interval prediction model based on the tempo-
ral convolutional networks (TCN) to improve the accuracy of wind
speed prediction. Wu et al. (2022b) introduced a multidimensional
spatiotemporal graph neural network (MST-GNN) that incorporates a
Wind-Transformer in the temporal perspective for single-point wind
speed prediction. Additionally, they utilize a graph neural network with
the Wind-Transformer as a node in the spatial perspective to achieve
accurate wind speed prediction at the specific location.

Time-series prediction models are extensively employed in various
related domains (Adnan et al., 2021; Ikram et al., 2022b; Adnan et al.,
2023; Ikram et al., 2022c,a). Khosravi et al. (2023) used convolutional
neural networks, recurrent neural networks and long and short-term
memory to accurately predict soil erosion susceptibility in a catchment
area. Yuan et al. (2018) proposed a hybrid model, LSTM-ALO, which
utilizes the Ant-Lion Optimizer (ALO) to calibrate the parameters of the
Long Short-Term Memory network for monthly runoff prediction. Ad-
nan et al. (2022) developed a novel hybrid method, ANFIS-GBO, using
the gradient-based optimization (GBO) algorithm to adjust the hyper-
parameters of the adaptive neuro-fuzzy system (ANFIS) for streamflow
prediction in a mountainous river basin.

However, these methods do not consider the spatial correlations
inherent in wind speed data. Shi et al. (2015) proposed convolutional
LSTM networks (ConvLSTM). Traditional physical methods and statisti-
cal methods have significant limitations in handling the spatiotemporal
correlations of wind speed. In contrast, modern deep learning meth-
ods, particularly ConvLSTM, exhibit remarkable advantages in this
regard. By using convolution structures in input-to-state and state-
to-state transitions, ConvLSTM can capture underlying spatiotemporal
features. ConvLSTM (Xiao et al., 2021; Scheepens et al., 2023) have
been successfully used to model the spatiotemporal correlations of wind
speed prediction and have obtained better prediction performance. On
this basis, the study uses a ConvLSTM encoder–decoder structure to
realize end-to-end wind speed prediction.

2.2. Convolutions for local spatial correlations

Because of its excellent performance in fitting nonlinear data, con-
volution operation has attracted massive researchers’ attention in ex-
tracting abstract features. However, the data often show irregular
change trends in scenes with complex spatial correlations (Zeng et al.,
2021). General convolution uses a fixed sampling position to extract
the local receptive field, which will lose some critical information. In
recent years, researchers have proposed some improvement strategies
from the perspective of optimizing spatial sampling locations:

Tang et al. (2020) proposed a multiscale spatial and spectral feature
model to capture the discriminative features for hyperspectral image
(HSI) classification to obtain spatial information of different scales.
Convolution operations of different sizes (for example, 3 × 3, 5 × 5, and
7 × 7) introduce additional parameter computation while adding mul-
tiscale features. Hu et al. (2018b) combined a 3-D atrous convolutional

neural network with ConvLSTM to capture depth vision features in
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Fig. 3. (a) Illustration of the overall architecture of LLConvLSTM model. (b) Illustration of Residual Deformable Convolution Module. (c) Illustration of Dense Coordinate Attention
Module.
video data. However, hollow convolution only samples pixels in strictly
symmetric positions. On the contrary, the regions where wind speed
changes are usually irregular. In this sense, ensuring that all essential
features are collected in symmetric positions is challenging, which may
even deteriorate the feature representation of local spatial information.

In order to extract effective features, Dai et al. (2017) proposed
Deformable Convolution (DCN). DCN uses additional offsets to augment
2-D spatial sampling locations and adaptively learns offsets through
gradient backpropagation. Deformable convolution has achieved sig-
nificant success in object detection (Wei et al., 2022), image segmen-
tation (Shen et al., 2023), video recovery (Wang et al., 2019) and
other domains. However, the sampling locations after deformation may
extend well beyond the effective region, affecting the feature by the
irrelevant region. Therefore, Zhu et al. (2019) improved the ability to
focus on pertinent regions by introducing a modulation mechanism.
Unlike standard convolution, which is sensitive to changes in geometric
rules (Liu et al., 2020), Deformable Convolution V2 (DCNv2) adaptively
learns sampling locations and modulation amplitudes which expand
the scope of deformation modeling. By introducing DCNv2, the study
designs a residual deformable convolution module (RDCM) better to
characterize the local spatial correlations of wind speed data.

2.3. Attention mechanisms for long-range spatial correlations

In recent years, attention mechanisms (Niu et al., 2021) have been
used in diverse domains of deep learning. Channel attention refines the
feature map by adjusting the relationships between channels. One of
the most widely used channel attention is the SE module (Hu et al.,
2018a), which adaptively calibrates channel-wise features by explicitly
modeling the interdependencies between channels. Nevertheless, the
channel attention mechanism ignores the importance of spatial location
4

information. Whereafter, scholars proposed the convolutional block
attention module (CBAM) (Woo et al., 2018). CBAM generates atten-
tion feature map sequentially along two separate dimensions (channel
and space). Zhang and Yang (2021) proposed Shuffle Attention (SA)
module. SA utilizes Shuffle Unit to process feature dependencies of
multiple sub-features in spatial and channel dimensions parallelly and
uses ‘‘channel shuffle’’ to aggregate all sub-features. Although these
attention mechanisms consider spatial and channel information, they
ignore spatial positional information loss caused by 2-D global pooling.
The representation of spatial location information by model structure
will directly affect the interpretability of the model’s spatial correla-
tions. Therefore, it is difficult for these attention mechanisms to model
spatial correlations in wind speed prediction accurately.

For extracting accurate long-range spatial positional information,
Hou et al. (2021) proposed a coordinate attention (CA) mechanism.
CA embed positional information into channel attention by coordinate
information embedding and coordinate attention generation, thereby
retaining precise spatial positional information. CA module shows ex-
cellent application potential in computer vision, such as ship detec-
tion (Wu et al., 2022a) and lung mass segmentation (Chang et al.,
2022). Introducing CA mechanism, the study designs a dense coordi-
nate attention module (DCAM) to accurately characterizes the long-
range spatial correlations of wind speed data.

3. Method

In this section, the paper introduces the overall architecture of
LLConvLSTM model, convolutional long and short-term memory
(ConvLSTM), the residual deformable convolution module (RDCM) and
dense coordinate attention module (DCAM) in detail.
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Fig. 4. (a) Illustration of ConvLSTM encoder layer. (b) Illustration of ConvLSTM decoder layer.
𝑐

3.1. LLConvLSTM Model

The study proposes the LLConvLSTM model to model local and long-
range spatial correlations in spatiotemporal wind speed prediction.
Fig. 3(a) is the overall architecture of LLConvLSTM model.

(1) Encoder part
Encoder part consists of a 2-D convolution layer, a RDCM, and

three ConvLSTM encoder layers. The wind speed feature map is first
fed into a 2-D convolution layer to extract features and expand the
number of channels. In addition, the encoder part employs RDCM
to characterize local spatial correlations by capturing the essential
sampling information in the irregular region while maintaining the
number of channels in the feature map. With each layer of RDCM
inserted, parameters of encoder part increase. Over-adding RDCM does
not significantly improve predictive performance. In order to balance
computational efficiency and performance, only one layer of RDCM is
added after the 2-D convolution layer. Its output is adjusted to a data
format acceptable to the ConvLSTM encoder.

The input feature map of ConvLSTM encoder is composed of se-
quences of given length 𝑇 . The illustration of ConvLSTM encoder is
shown in Fig. 4(a). Through convolution operations, the ConvLSTM cell
learns the spatiotemporal relationship of wind speed from input feature
map. In the structure of multilayer ConvLSTM encoder layer, the output
of (𝑘 − 1)th layer is utilized as the input of 𝑘th layer. Meanwhile, to
avoid the loss of critical spatial information, the stride is set as 1 in
the ConvLSTM cell to maintain the size of feature map. The output of
ConvLSTM encoder can be computed as follows:
(

ℎ𝑘, 𝑐𝑘
)

, 𝑋𝑘 = encoder
(

𝑋𝑘−1) (1)

where 𝑋𝑘−1 and 𝑋𝑘 represent the input and output of the 𝑘th
ConvLSTM encoder layer respectively. 𝑋𝑘 consists of the results ℎ𝑘𝑡 of
ConvLSTM, 𝑡 ∈ [0, 1,… , 𝑇 − 1]. For each sample 𝑥𝑘−1𝑡 of input data
𝑋𝑘−1, 𝑥𝑘−1𝑡 ∈ R𝐵×𝐶×𝐻×𝑊 . encoder(⋅) represents the internal operation
of ConvLSTM encoder,

(

ℎ𝑘, 𝑐𝑘
)

represents the last hidden state and cell
state of the 𝑘th ConvLSTM encoder layer.

(2) Decoder part
The structure of decoder and encoder parts is approximately similar.

The decoder part consists of three DCAM, three ConvLSTM decoders
5

and two 2-D convolution layers, which are used to predict the wind
speed sequence of length �̂� . The illustration of ConvLSTM decoder is
shown in Fig. 4(b). The model uses the last hidden state ℎ𝑘 and cell state
𝑐𝑘 of ConvLSTM encoder to initialize the hidden state and cell state of
ConvLSTM decoder at the same layer, which makes the decoder pay
more attention to the details of the input information and reduces the
pressure of information carrying. The hidden state ℎ̂𝑘 and cell state 𝑐𝑘

in the 𝑘th ConvLSTM decoder layer can be calculated as follows:

ℎ̂𝑘 = DCAM
(

ℎ𝑘
)

(2)

̂𝑘 = 𝑐𝑘 (3)

where DCAM (⋅) indicates that the initial hidden state ℎ̂𝑘 of ConvLSTM
decoder requires learning the long-range spatial correlations of wind
speed through DCAM.

Therefore, the output of the 𝑘th ConvLSTM decoder layer can be
calculated as follows:

�̂�𝑘−1 = decoder
(

�̂�𝑘,
(

ℎ̂𝑘, 𝑐𝑘
))

(4)

where �̂�𝑘 and �̂�𝑘−1 represent the input and output of the 𝑘th ConvLSTM
decoder layer, respectively. decoder(⋅) represents the internal operation
of ConvLSTM decoder cell. The two 2-D convolution layers receive
features from the last ConvLSTM decoder layer to adjust the number
of channels and achieve end-to-end prediction.

ConvLSTM encoder–decoder structure utilizes rich information in
shallow and deep feature maps so that the model has nonlinear map-
ping capabilities and can extract the space–time correlations character-
istics in historical wind speed data. After adding RDCM and DCAM,
LLConvLSTM model integrates the rich local and long-range spatial
correlations of the wind speed data. Simultaneously modeling local
and long-range spatial correlations highlights the robustness and ap-
propriateness of the novel LLConvLSTM in addressing the challenges
of accurate wind speed prediction, providing a promising solution
for wind speed forecasting. Additionally, considering that predictions
based on artificial intelligence models are heavily influenced by the
training data, any variations in the selected training data can introduce
significant uncertainties in the model’s outputs (Ghiasi et al., 2022).
The selection of machine learning techniques can also significantly
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Fig. 5. Illustration of ConvLSTM structure.
impact the quantification capabilities of the model (Donnelly et al.,
2022). To make the proposed method applicable to a wider range of
data variations, our future work will focus on designing a universal data
embedding approach.

3.2. Convolutional long short term memory

Due to the influence of temporal and spatial correlations, wind
speed prediction is exceptionally challenging. Therefore, this study
introduces ConvLSTM to extract the spatiotemporal characteristics of
wind speed data. Researchers have verified the superiority of ConvLSTM
to extract spatiotemporal characteristics, including traffic flow pre-
diction (Lin et al., 2020), infectious disease prediction (Paul et al.,
2020), and rainfall prediction (Liu et al., 2022). ConvLSTM preserves
the merits of LSTM to capture long-term temporal dependencies while
incorporating the advantage of convolution operator to capture spatial
features. So ConvLSTM could be utilized to predict spatiotemporal wind
speed. The structure of ConvLSTM is shown in Fig. 5, and its detailed
mathematical formula can be calculated as follows:

𝑓𝑡 = 𝜎
(

𝐖𝑥𝑓 ∗ 𝑥𝑡 +𝐖ℎ𝑓 ∗ ℎ𝑡−1 +𝐖𝑐𝑓◦𝑐𝑡−1 + 𝐛𝑓
)

(5)

𝑖𝑡 = 𝜎
(

𝐖𝑥𝑖 ∗ 𝑥𝑡 +𝐖ℎ𝑖 ∗ ℎ𝑡−1 +𝐖𝑐𝑖◦𝑐𝑡−1 + 𝐛𝑖
)

(6)

𝑜𝑡 = 𝜎
(

𝐖𝑥𝑜 ∗ 𝑥𝑡 +𝐖ℎ𝑜 ∗ ℎ𝑡−1 +𝐖𝑐𝑜◦𝑐𝑡 + 𝐛𝑜
)

(7)

𝑐𝑡 = 𝑓𝑡◦𝑐𝑡−1 + 𝑖𝑡◦ tanh
(

𝐖𝑥𝑐 ∗ 𝑥𝑡 +𝐖ℎ𝑐 ∗ ℎ𝑡−1 + 𝐛𝑐
)

(8)

ℎ𝑡 = 𝑜𝑡◦ tanh
(

𝑐𝑡
)

(9)

where 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡 respectively indicate the forgotten gates, input
gates, and output gates of ConvLSTM. By computing current input 𝑥𝑡
with previous hidden state ℎ𝑡−1, the forgotten gate concludes what
information should be deserted from the previous cell state 𝑐𝑡−1. The
input gate determines what current information should be stored by
updating the current cell state 𝑐𝑡. The output gate determines which
information should be chosen from 𝑐𝑡 to be passed as output to the
next ConvLSTM. 𝐖 is the weight matrix and 𝐛 is the offset. ∗ and ◦
denote convolution operation and Hadamard operation respectively.
𝜎 represents the Sigmoid activation function defined in the Eq. (10).
tanh represents the hyperbolic tangent activation function defined in
the Eq. (11).

𝜎(𝑥) = 1
1 + e−𝑥

(10)

tanh(𝑥) =
sinh(𝑥)
cosh(𝑥)

= e𝑥 − e−𝑥
e𝑥 + e−𝑥

(11)

When LSTM processes spatiotemporal data, the input and hidden
state are fully connected to each gate-based structure, so capturing
the internal spatial correlations is complicated. Compared with LSTM,
6

ConvLSTM introduces convolution operation instead of the usage of
full connections where no spatial structural information is encoded.
With the convolution operation, ConvLSTM can capture interregional
spatial information by integrating historical input and its surrounding
neighbors to model the future state of entire region and realize precise
wind speed prediction.

3.3. Residual deformable convolution module

In traditional convolution operation, the convolution kernel with a
fixed size (e.g., 3 × 3) is utilized to sample feature maps, restricting
the ability to handle complex spatial transformations (Wu et al., 2021).
Only some of the information in the receptive field covered by the stan-
dard convolution kernel contribute equally to the sampling points for
the gridded wind speed feature map. Because different spatial locations
may correspond to features with different scale and deformation, the
convolution kernel with a fixed size in ConvLSTM cannot effectively
learn the changeable relationship in the local area (Li et al., 2021;
Zhao et al., 2022), and it is difficult to extend to the complex and
non-stationary large wind farm.

In order to solve this problem, the study proposes a residual de-
formable convolution module (RDCM) based on DCNv2. DCNv2 uses
additional offsets learned from the spatial distribution of wind speed to
obtain critical sampling locations and modulates the amplitude of input
features. The sampling grid can deform freely to simulate local irregular
wind speed trends in real scenarios. Residual connection can reduce
model complexity to reduce overfitting. Therefore, through RDCM, the
receptive field is concentrated on the critical sampling points with
similar trends as much as possible, and the model can effectively
represent the local spatial correlations of wind speed.

As shown in Fig. 6, the orange points represent the regular sampling
grid of standard convolution, and the 2-D offset allows the deformations
convolution to select more data containing the required information
(dark blue points). Standard convolution first samples using regular
grid 𝐺 over the input feature map 𝑥cur_conv and then computes the
weighted summation of sampled values, where 𝐼 = |𝐺|. For instance,
standard convolution defines a 3 × 3 kernel with dilation 1 :

𝐺 = {(−1,−1), (−1, 0),… , (0, 1), (1, 1)} (12)

The output feature map of standard convolution 𝑦std_conv at each
location 𝑝0 can be calculated as follows:

𝑦std_conv
(

𝑝0
)

=
∑

𝑝𝑖∈𝐺
𝐰
(

𝑝𝑖
)

⋅ 𝑥cur_conv
(

𝑝0 + 𝑝𝑖
)

(13)

where 𝑝𝑖 ∈ 𝐺 enumerates the locations in 𝐺, 𝑥cur_conv
(

𝑝0 + 𝑝𝑖
)

is an
arbitrary location in the input feature map, and 𝐰

(

𝑝𝑖
)

is the weight of
standard convolution kernel at 𝑝 .
𝑖
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Fig. 6. Illustration of sampling locations in standard convolution and Deformable Convolution V2. (a) regular sampling grid (orange points) of standard convolution. (b) - (d)
deformed sampling locations (dark blue points) with augmented offsets (light blue arrows) of Deformable Convolution V2.
Fig. 7. Illustration of the receptive fields of standard convolution and Deformable Convolution V2. Left: standard convolution. Right: Deformable Convolution V2.
Compared with standard convolution, the output feature map of
deformable convolution 𝑦def_conv at each sampling location 𝑝0 can be
calculated as follows:

𝑦def_conv
(

𝑝0
)

=
∑

𝑝i∈𝐺
𝐰
(

𝑝𝑖
)

⋅ 𝑥cur_conv
(

𝑝0 + 𝑝𝑖 + 𝛥𝑝𝑖
)

⋅ 𝛥𝑚𝑖 (14)

where 𝛥𝑝𝑖 and 𝛥𝑚𝑖 respectively denote the learnable offset and modu-
lation scalar at 𝑝𝑖. As shown in Fig. 7, 𝛥𝑝𝑖 and 𝛥𝑚𝑖 are obtained through
an additional convolution layer Conv applied over the same input
feature map. Conv has the same kernel and dilation as the current input
feature map 𝑥cur_conv. The output is of 3𝐼 channels, where the former
2𝐼 channels correspond to the adaptively learnable offsets

{

𝛥𝑝𝑖
}𝐼
𝑖=1. The

remaining 𝐼 channels are fed into via the Sigmoid activation function
to obtain the learned modulation scalars

{

𝛥𝑚𝑖
}𝐼
𝑖=1. 𝛥𝑝𝑖 is typically

fractional and must be integrated via bilinear interpolation.
Fig. 8 shows the difference between the receptive fields of standard

convolution and Deformable Convolution V2. The receptive field and
sampling locations in standard convolution remain constant across the
top feature map. According to the spatial distribution of wind speed,
DCNv2 adjusts the receptive field, sampling locations and modulation
scalars in order to simulate the local wind speed flow dynamics.

RDCM combines DCNv2, BatchNorm, HardSwish activation function
with the residual connection, as shown in Fig. 3(b). The output 𝑦𝑟 ∈
R𝐶×𝐻×𝑊 can be calculated as follows:

𝑦𝑟 = BHD
(

𝑥𝑟
)

+ 𝑥𝑟 (15)

where 𝑥𝑟 ∈ R𝐶×𝐻×𝑊 denotes the input feature map of RDCM. BHD(⋅)
denotes the integration of BatchNorm, HardSwish and deformable con-
volution operation with modulation mechanism. HardSwish (Howard
et al., 2019) can be implemented as a piece-wise function to reduce
the number of memory accesses, thus decreasing the computation cost.
Deep learning models typically using HardSwish perform better than
7

ReLU. The formula of HardSwish can be calculated as follows:

HardSwish(𝑥) =

⎧

⎪

⎨

⎪

⎩

0, 𝑖𝑓 𝑥 ≤ −3
𝑥, 𝑖𝑓 𝑥 ≥ 3
𝑥⋅(𝑥+3)

6 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(16)

Deformable Convolution V2 is embedded into RDCM, adaptive
learning local wind speed flow dynamics. Adding the residual connec-
tion realizes the reuse of original input features. Therefore, RDCM can
further enhance the capacity to capture local spatial correlations.

3.4. Dense coordinate attention module

Coordinate attention mechanism allows feature maps to embed
positional information into channel attention and then capture long-
range dependencies along one spatial direction while retaining precise
positional information along another spatial direction. Further, this
study proposes a dense coordinate attention module (DCAM), which
acts on the last hidden state of ConvLSTM encoder at each layer.
The structure of coordinate attention is shown in Fig. 9. CA encodes
long-range spatial correlations through two specific steps: coordinate
information embedding and coordinate attention generation.

Specifically, given an input 𝑥 with dimension size 𝐶 ×𝐻 ×𝑊 , two
one-dimensional average pooling layers with kernels (𝐻, 1) and (1,𝑊 )
are utilized for encoding each channel along the horizontal coordinate
and the vertical coordinate respectively. For the output of 𝑐th channel,
the pooling process at height ℎ and width 𝑤 can be calculated as
follows:

𝑧ℎ𝑐 (ℎ) =
1
𝑊

∑

0≤𝑖<𝑤
𝑥𝑐 (ℎ, 𝑖) (17)

𝑧𝑤𝑐 (𝑤) = 1
𝐻

∑

0≤𝑗<ℎ
𝑥𝑐 (𝑗, 𝑤) (18)

where 𝑥𝑐 and 𝑧𝑐 respectively denote the input and output of the 𝑐th
channel in the above formulas. These two transformations separately
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Fig. 8. Illustration of Deformable Convolution V2.
Fig. 9. Illustration of Coordinate Attention.
aggregate features in horizontal and vertical coordinates, generating a
pair of directional-aware feature maps, which realize the coordinate
information embedding.

In order to make full use of global coordinate information, the two
encoding features are concatenated along the horizontal coordinate and
sent through a shared convolutional transformation 𝑠 with kernel 1×1,
and it can be calculated as follows:

𝑓𝑠 = HardSwish
(

𝑠
[

𝑧ℎ; 𝑧𝑤
])

(19)

where [⋅; ⋅] denotes the concatenation operation along the horizontal
spatial dimension. 𝑓𝑠 ∈ R𝐶∕𝑟×(𝐻+𝑊 )×1 denotes the intermediate fea-
ture map encoding the locational information in both the horizontal
direction and vertical direction. 𝑟 is the reduction ratio that controls
dimension to reduce the model’s complexity and is generally set to 32.

Then split 𝑓𝑠 along the horizontal spatial dimension into two inde-
pendent tensors 𝑓ℎ ∈ R𝐶∕𝑟×𝐻×1 and 𝑓𝑤 ∈ R𝐶∕𝑟×1×𝑊 . Additional two
1×1 convolutional transformations  and  with Sigmoid activation
8

ℎ 𝑤
function are utilized to restore the channel number of 𝑓ℎ and 𝑓𝑤 to the
initial value 𝐶, which can be calculated as follows:

𝑔ℎ = 𝜎
(

ℎ
(

𝑓ℎ)) (20)

𝑔𝑤 = 𝜎
(

𝑤
(

𝑓𝑤)) (21)

where 𝑔ℎ and 𝑔𝑤 denote the attention weights in the horizontal and
vertical directions, respectively.

Finally, multiplying the input 𝑥 with the two attention weights
yields the coordinate attention’s output 𝑦𝑐 , which can be calculated as
follows:

𝑦𝑐 (𝑖, 𝑗) = 𝑥𝑐 (𝑖, 𝑗) × 𝑔ℎ𝑐 (𝑖) × 𝑔𝑤𝑐 (𝑗) (22)

Coordinate attention mechanism is embedded in DCAM, as shown
in Fig. 3(c). CBH is utilized before the coordinate attention mechanism,
and a residual connection is added to get the intermediate result 𝑦𝑚.
Assuming the input feature map of DCAM is 𝑥 ∈ R𝐶×𝐻×𝑊 , 𝑦 can be
𝑑 𝑚
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calculated as follows:

𝑦𝑚 = CA
(

CBH
(

𝑥𝑑
))

+ 𝑥𝑑 (23)

where CA(⋅) denotes coordinate attention operation. CBH(⋅) den-
tes the integration operation of 2-D convolution, BatchNorm and
ardSwish. The intermediate results repeat the above operations and

hen integrate the initial input and intermediate results to obtain the
inal output of dense connections. The output 𝑦𝑑 ∈ R𝐶×𝐻×𝑊 can be

calculated as follows:

𝑦𝑑 = CA
(

CBH
(

𝑦𝑚
))

+ 𝑦𝑚 + 𝑥𝑑 (24)

Standard convolution with a fixed kernel can only process position
information in adjacent regions. By encoding global information using
two complementary 1-D average pooling operations, DCAM can capture
spatial correlations in distant regions while avoiding the loss of position
information caused by 2-D global pooling used by other channel and
spatial attention mechanisms. The following experimental verification
shows that introducing DCAM into the proposed approach can improve
the accuracy of wind speed prediction.

4. Experiments

4.1. Data preprocessing

Wind energy research requires high-quality wind speed datasets
(Draxl et al., 2015). This study uses a grid integration dataset called
the Western Wind and Solar Integration Study (WWSIS) dataset (Potter
et al., 2008). The WWSIS dataset selects over 30,000 location points
for further simulation. To facilitate the experimental evaluation, each
location point with ten Vestas V-90 (3MW) turbines can be considered
a virtual wind turbine. It produces wind speed data with a spatial
resolution of 2 km × 2 km and a temporal resolution of 10 min, namely
144 data points per day.

In the experiments, the dataset from January 2004 to December
2004 is utilized as the training set to train the parameters of the
proposed LLConvLSTM model. The remaining dataset from January
2005 to December 2005 is utilized as the verification set to verify the
prediction performance. The study selects 253 virtual wind turbines
to present a spatiotemporal feature map of size 16*16, which covers
the region from 41.708◦N to 41.958◦N in latitude and 106.508◦W
to 106.258◦W in longitude, as shown in Fig. 1. Blank points are
supplemented with zero values. Gridded wind speed data per 10 min is
continuous frames and the value in each grid can be considered as the
pixel in the feature maps. The study adjusts the shape of the training
data and verification data to the required tensor format in the PyTorch
framework.

From the common knowledge of wind speed prediction, the longer
the past time, the less influence it has on the present. Considering the
influence of time step, this study utilizes the previous six consecutive
samples to predict the future one-step-ahead, two-step-ahead and three-
step-ahead wind speed, namely wind speed in the future 10 min, 20 min
and 30 min.

Given the noticeable discrepancy in the wind speed value, the
study applies the maximum–minimum normalization to all input se-
quences before feeding them into the model, which can eliminate the
gradient explosion and improve the model convergence speed. The
maximum–minimum normalization can be calculated as follows:

𝑣′ =
𝑣 − 𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
(25)

here 𝑣𝑚𝑎𝑥 and 𝑣𝑚𝑖𝑛 denote the maximum and minimum values of the
ample data in the training set respectively. In evaluating the prediction
erformance, the predictive data and the truth must pass through the
enormalization operation. The parameters of the denormalization op-
ration are still based on the wind speed range of the original training
et.
9

.2. Experimental configurations

The study proposes the LLConvLSTM model for wind speed predic-
ion, which is implemented by Pytorch library of Python programming
anguage. To prevent overfitting, the model must randomly shuffle the
rder of input samples. The model is trained for 100 epochs and the
atch size is set to 256. The study trains the model by minimizing
he mean square error loss and the Adam (Kingma and Ba, 2014)
ptimizer with 1 × 10−5 weight decay. Additionally, the gradient is

clipped before the optimizer updates the parameters to alleviate gradi-
ent explosion or gradient vanishing. The learning rate tuning function
is CosineAnnealing, where the initial learning rate is set to 1×10−3 and
the termination learning rate is set to 1 × 10−5.

4.3. Evaluation metrics

To verify the validity of the LLConvLSTM model, this study eval-
uates the model using four standard metrics: Mean Absolute Error
(MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and
coefficient of determination (R2). MAE, MSE and RMSE are utilized to
measure the deviation of the predicted value from the actual value. The
closer MAE, MSE and RMSE are to 0, the better predictive performance
he model achieves. The coefficient of determination R2 is utilized to
easure the fitting performance, with a value less than or equal to 1.
he closer R2 is to 1, the better fitting performance the model achieves.
he formulas for MAE, MSE, RMSE and R2 can be calculated as follows:

AE(𝑦, �̂�) = 1
𝑁

𝑁
∑

𝑖=1

|

|

𝑦𝑖 − �̂�𝑖|| (26)

SE(𝑦, �̂�) = 1
𝑁

𝑁
∑

𝑖=1

(

𝑦𝑖 − �̂�𝑖
)2 (27)

RMSE(𝑦, �̂�) =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

(

𝑦𝑖 − �̂�𝑖
)2 (28)

R2(𝑦, �̄�, �̂�) = 1 −
∑𝑁

𝑖=1
(

𝑦𝑖 − �̂�𝑖
)2

∑𝑁
𝑖=1

(

𝑦𝑖 − �̄�
)2

(29)

where 𝑁 denotes the total number of samples in the verification set,
𝑦𝑖 denotes the actual wind speed value, �̂�𝑖 denotes the predicted wind
speed value, and �̄� denotes the average of all actual wind speed values.

4.4. Comparisons with other methods

4.4.1. Detailed description of the compared methods
In order to verify the superiority of the LLConvLSTM model, the

study utilizes a series of prediction methods and compares them with
the proposed approach. These methods include Naive Persistence (Pot-
ter and Negnevitsky, 2006), CNN (Harbola and Coors, 2019), LSTM
(Kisvari et al., 2021), CNN-LSTM (Shen et al., 2022) and four conven-
tional machine learning regression algorithms (Liao et al., 2021; Kusiak
and Zhang, 2010; Lahouar and Slama, 2017; Velo et al., 2014).

Naive Persistence method is the baseline for all regression problems,
which directly utilizes the wind speed observed values at the previous
moment as the future prediction. CNN can handle topological data with
a distinct gridded shape and LSTM has been employed successfully for
processing sequential data. CNN-LSTM is widely applied as a hybrid
model for wind speed prediction. Convolutional operation is responsi-
ble for reading and encoding local features in the time series, while
the LSTM layer receives the extracted features from the CNN layer as
input for multi-step prediction. Furthermore, the experiments use four
conventional machine learning regression algorithms to further verify
the superiority of the proposed approach. These regression algorithms
include gradient boosting regression tree (GBRT), 𝑘-nearest neigh-
bor regression (𝑘-NN), random forest (RF) and multilayer perceptron
(MLP).



Engineering Applications of Artificial Intelligence 130 (2024) 107613M. Yu et al.

l
a
T
S
2
f

4

s
a

1
a
e
w
L

Table 1
Comparison of LLConvLSTM and other methods for one-step-ahead prediction in the 2005 verification set. Best results are shown in bold.

Method One-step-ahead

MAE MSE RMSE R2

Naive Persistence (Potter and Negnevitsky, 2006) 0.2555 0.2029 0.4504 0.9907
GBRT (Liao et al., 2021) 0.2483 0.1898 0.4357 0.9912
𝑘-NN (Kusiak and Zhang, 2010) 0.2187 0.1819 0.4265 0.9917
RF (Lahouar and Slama, 2017) 0.2149 0.1763 0.4199 0.9919
MLP (Velo et al., 2014) 0.2299 0.1745 0.4177 0.9920
LSTM (Kisvari et al., 2021) 0.2263 0.1751 0.4184 0.9920
CNN (Harbola and Coors, 2019) 0.2292 0.1837 0.4287 0.9916
CNN-LSTM (Shen et al., 2022) 0.2176 0.1702 0.4126 0.9922
LLConvLSTM 0.1919 0.1199 0.3463 0.9945
Table 2
Comparison of LLConvLSTM and other methods for two-step-ahead prediction in the 2005 verification set. Best results are shown in bold.

Method Two-step-ahead

MAE MSE RMSE R2

Naive Persistence (Potter and Negnevitsky, 2006) 0.4478 0.5277 0.7264 0.9759
GBRT (Liao et al., 2021) 0.4368 0.4932 0.7023 0.9768
𝑘-NN (Kusiak and Zhang, 2010) 0.4032 0.4758 0.6898 0.9780
RF (Lahouar and Slama, 2017) 0.3995 0.4664 0.6829 0.9783
MLP (Velo et al., 2014) 0.4104 0.4572 0.6762 0.9782
LSTM (Kisvari et al., 2021) 0.4138 0.4675 0.6837 0.9787
CNN (Harbola and Coors, 2019) 0.4259 0.4997 0.7069 0.9772
CNN-LSTM (Shen et al., 2022) 0.3944 0.4445 0.6667 0.9797
LLConvLSTM 0.3492 0.3446 0.5870 0.9839
Table 3
Comparison of LLConvLSTM and other methods for three-step-ahead prediction in the 2005 verification set. Best results are shown in bold.

Method Three-step-ahead

MAE MSE RMSE R2

Naive Persistence (Potter and Negnevitsky, 2006) 0.6031 0.8720 0.9338 0.9602
GBRT (Liao et al., 2021) 0.5902 0.8117 0.9009 0.9613
𝑘-NN (Kusiak and Zhang, 2010) 0.5578 0.7880 0.8877 0.9632
RF (Lahouar and Slama, 2017) 0.5532 0.7711 0.8781 0.9638
MLP (Velo et al., 2014) 0.5528 0.7529 0.8677 0.9645
LSTM (Kisvari et al., 2021) 0.5594 0.7679 0.8763 0.9650
CNN (Harbola and Coors, 2019) 0.5868 0.8378 0.9153 0.9618
CNN-LSTM (Shen et al., 2022) 0.5474 0.7461 0.8638 0.9660
LLConvLSTM 0.4752 0.5798 0.7614 0.9729
i
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In this experiment, Naive Persistence is implemented by Numpy
ibrary of Python programming language. CNN, LSTM and CNN-LSTM
re implemented by Pytorch library of Python programming language.
he four conventional machine learning methods are implemented by
klearn library of Python programming language (Pedregosa et al.,
011). Meanwhile, the wind speed data are converted into the input
ormats that these methods can handle.

.4.2. Comparison of experimental results
Comparison between LLConvLSTM and the other models for one-

tep-ahead prediction is shown in Table 1. The proposed method
chieves MAE, MSE and RMSE of 0.1919, 0.1199 and 0.3463 respec-

tively, generally outperforming other models. The proposed method
reduces MAE, MSE and RMSE by 24.89%, 40.91% and 23.11% re-
spectively compared to Naive Persistence, which struggles to model
the nonlinear characteristics of wind speed data. Naive Persistence
merely employs the observation from the previous time step as the
prediction value, leading to a failure in fully capturing the temporal
correlations of wind speed and disregarding its spatial correlations. It is
worth mentioning that the proposed approach exhibits more promising
prediction performance than the deep learning-based method. Com-
pared with CNN, LSTM and CNN-LSTM, the MAE is decreased by
6.27%, 15.20% and 11.81%, and MSE by 34.73%, 31.52%, 29.55%
nd RMSE by 19.22%, 17.23%, 16.07% respectively. CNN, LSTM, and
ven CNN-LSTM partially capture the spatiotemporal correlations of
ind speed, but they fall far short of LLConvLSTM in this aspect.
10

LConvLSTM comprehensively perceives spatiotemporal correlations
n wind speed prediction and introduces RDCM and DCAM modules
o further enhance modeling capabilities for local and long-range
patial correlations. LLConvLSTM also outperformed the other four ma-
hine learning regression algorithms in prediction performance. These
achine learning methods are computationally expensive, and their
erformance is sensitive to the choice of hyperparameters. Moreover,
hey face challenges in interpreting the spatiotemporal correlations
n wind speed data. The proposed approach achieves a peak of R2

of 0.9945, which is closer to 1 compared to other methods, and the
fitting is satisfactory. Important factors affecting the integration of
wind turbines include the geospatial distribution of turbines and the
time-varying wind speed data at each location. With wind energy,
turbine power generation is forced by variations in wind speed’s
spatial and temporal correlations. Accurate wind speed prediction
in spatiotemporal correlations is vital for the rational dispatch of
power systems. ConvLSTM encoder–decoder architecture maintains and
integrates spatiotemporal information from deep and shallow layers.
Considering the local and long-range spatial correlations in entire wind
farms, the proposed approach further enhances the prediction accu-
racy by introducing RDCM and DCAM to extract spatial information
excellently.

Tables 2–3 show the comparison between LLConvLSTM and other
methods for two-step-ahead and three-step-ahead prediction. The pro-
posed approach improves MSE by 34.70% and 33.51% over
Naive Persistence in two-step-ahead and three-step-ahead prediction

respectively. The experimental results demonstrate that the proposed
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Fig. 10. (a) Comparison of wind speed prediction results between the proposed approach and deep learning methods on Turbine 17039. (b) Comparison of wind speed prediction
results between the proposed approach, Naive Persistence and machine learning methods on Turbine 17039. (c) Comparison of wind speed prediction results between the proposed
approach and deep learning methods on Turbine 18627. (d) Comparison of wind speed prediction results between the proposed approach, Naive Persistence and machine learning
methods on Turbine 18627.
approach still significantly outperforms the other compared methods
in multi-step wind speed prediction.

From Fig. 10, the wind speed prediction results are shown for
one-step-ahead prediction at Turbine 17039 (106.292◦W, 41.725◦N)
and Turbine 18627 (106.375◦W, 41.942◦N). It is observed that the
prediction results of LLConvLSTM are closer to the actual values com-
pared to other methods. In the two different time frames shown in
10, LLConvLSTM demonstrates a more rapid and stable perception of
abrupt wind speed changes compared to other methods, particularly
during periods of significant wind speed fluctuations. The proposed
method exhibits a significant reduction in time delay effects, whereas
these comparative methods only differ in terms of data inputs. This
indicates that enhancing the perception of spatial correlations improves
the ability to capture wind speed variation trends. This capability
enhances the safety of wind power equipment, reducing the risk of
equipment damage and ensuring the smooth operation of large-scale
wind farms. Sensitive perception of abrupt wind speed variations by
LLConvLSTM can provide more accurate information for the daily
operation of wind farms, assisting maintenance personnel in their
maintenance strategies.

Figs. 11–13 show the visualization of the wind speed prediction
results for one-step-ahead at different moments. Compared to other
methods, the prediction results of the proposed approach are closest
to the actual values in regions with considerable wind speed variation,
validating the importance of the proposed approach modeling local and
long-range spatial correlations to improve the accuracy of wind speed
prediction for wind farms.
11
During a year, wind speed data varies over 12 months due to
atmospheric fluctuations. Therefore, it is necessary to analyze the wind
speed prediction performance in 12 months respectively. The validation
set contains one-year data, and thus the prediction performance is
verified in 12 months respectively. Indexes of one-step-ahead, two-step-
ahead and three-step-ahead predictions for each month in 2005 are
given in Tables 4–6. From Tables 4–6, the proposed approach achieves
promising results in terms of performance indexes for most months,
further verifying the superiority and stability of the proposed approach.

4.4.3. Time step analysis
In the previous experiments, based on the common knowledge of

wind speed prediction, this study used the previous six consecutive time
steps to forecast wind speed. The time step represents a crucial param-
eter for spatiotemporal wind speed sequence features. Considering the
influence of time step size on the performance of spatiotemporal wind
speed prediction and its practical significance, this study selected three
time steps, time step = 3 (half-hour data), 6 (one-hour data), and 9
(one and a half-hour data), to predict wind speed one-step-ahead and
determine the appropriate time step.

According to Table 7, it is evident that the proposed method
achieves an MSE of 0.1199 when the time step is 6, which is lower
compared to the MSE obtained with time steps of 3 and 9. In terms of
RMSE and R2 evaluation metrics, the model with a time step of 6 also
outperforms the models with the other two time steps. When predicting
wind speed, selecting an appropriate time dimension is crucial, as too
many or too few time steps can impact the model performance. To sum
up, this study adopts a time step of 6 for wind speed prediction.
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Fig. 11. Visualizations of wind speed prediction results one-step-ahead at timestamp 34657. The first row includes the results of Ground Truth, Naive Persistence, GBRT, 𝑘-NN
and RF respectively. The second row includes the results of MLP, LSTM, CNN, CNN-LSTM and LLConvLSTM respectively.
Fig. 12. Visualizations of wind speed prediction results one-step-ahead at timestamp 41019. The first row includes the results of Ground Truth, Naive Persistence, GBRT, 𝑘-NN
and RF respectively. The second row includes the results of MLP, LSTM, CNN, CNN-LSTM and LLConvLSTM respectively.
Fig. 13. Visualizations of wind speed prediction results one-step-ahead at timestamp 42535. The first row includes the results of Ground Truth, Naive Persistence, GBRT, 𝑘-NN
and RF respectively. The second row includes the results of MLP, LSTM, CNN, CNN-LSTM and LLConvLSTM respectively.
4.4.4. Learning rate analysis
An appropriate learning rate is crucial for achieving optimal model

performance. Higher learning rates can lead to oscillations or failure
to converge during training, as they might skip the global minimum,
12
resulting in poor model performance. On the other hand, lower learning
rates can lead to a slow training process that may not reach optimal
results within a reasonable number of training iterations. A learning
rate between higher and lower values is a more suitable choice, as it
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Table 4
Comparison of LLConvLSTM and other methods for one-step-ahead prediction in the 12 months verification set. Best results are shown in bold.

Metric Method One-step-ahead

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Naive Persistence (Potter and Negnevitsky, 2006) 0.1741 0.1687 0.1827 0.2614 0.2966 0.3812 0.3404 0.3117 0.3194 0.2107 0.2239 0.1912
GBRT (Liao et al., 2021) 0.1761 0.1649 0.1800 0.2489 0.2857 0.3664 0.3278 0.3012 0.3068 0.2017 0.2234 0.1924
𝑘-NN (Kusiak and Zhang, 2010) 0.1313 0.1235 0.1475 0.2164 0.2699 0.3532 0.3119 0.2856 0.2857 0.1670 0.1784 0.1481
RF (Lahouar and Slama, 2017) 0.1293 0.1217 0.1450 0.2128 0.2666 0.3470 0.3069 0.2807 0.2803 0.1647 0.1739 0.1441

MAE MLP (Velo et al., 2014) 0.1515 0.1507 0.1622 0.2315 0.2740 0.3500 0.3155 0.2907 0.2892 0.1876 0.1903 0.1612
LSTM (Kisvari et al., 2021) 0.1486 0.1446 0.1565 0.2262 0.2711 0.3482 0.3118 0.2880 0.2870 0.1818 0.1870 0.1606
CNN (Harbola and Coors, 2019) 0.1509 0.1446 0.1593 0.2297 0.2722 0.3529 0.3141 0.2878 0.2896 0.1835 0.1948 0.1659
CNN-LSTM (Shen et al., 2022) 0.1415 0.1298 0.1490 0.2136 0.2624 0.3400 0.3029 0.2787 0.2777 0.1684 0.1861 0.1563
LLConvLSTM 0.1356 0.1262 0.1354 0.1990 0.2221 0.2842 0.2486 0.2302 0.2349 0.1588 0.1724 0.1518

Naive Persistence (Potter and Negnevitsky, 2006) 0.0673 0.0690 0.0771 0.1991 0.2429 0.4385 0.3290 0.2804 0.3219 0.1189 0.1499 0.1360
GBRT (Liao et al., 2021) 0.0660 0.0640 0.0742 0.1800 0.2267 0.4094 0.3095 0.2607 0.2992 0.1071 0.1445 0.1325
𝑘-NN (Kusiak and Zhang, 2010) 0.0462 0.0476 0.0619 0.1682 0.2286 0.4141 0.3095 0.2583 0.3047 0.0921 0.1258 0.1206
RF (Lahouar and Slama, 2017) 0.0453 0.0466 0.0605 0.1617 0.2239 0.4009 0.3001 0.2506 0.2941 0.0908 0.1200 0.1163

MSE MLP (Velo et al., 2014) 0.0505 0.0533 0.0620 0.1627 0.2179 0.3896 0.2978 0.2508 0.2820 0.0945 0.1193 0.1091
LSTM (Kisvari et al., 2021) 0.0501 0.0522 0.0606 0.1638 0.2169 0.3914 0.2982 0.2526 0.2862 0.0937 0.1176 0.1130
CNN (Harbola and Coors, 2019) 0.0508 0.0529 0.0612 0.1717 0.2303 0.4197 0.3074 0.2634 0.2950 0.1011 0.1290 0.1176
CNN-LSTM (Shen et al., 2022) 0.0479 0.0472 0.0584 0.1557 0.2133 0.3815 0.2898 0.2456 0.2769 0.0883 0.1197 0.1136
LLConvLSTM 0.0433 0.0435 0.0467 0.1196 0.1486 0.2481 0.1901 0.1580 0.1827 0.0722 0.0939 0.0897

Naive Persistence (Potter and Negnevitsky, 2006) 0.2595 0.2627 0.2777 0.4462 0.4929 0.6622 0.5736 0.5295 0.5674 0.3448 0.3872 0.3688
GBRT (Liao et al., 2021) 0.2568 0.2529 0.2723 0.4243 0.4762 0.6398 0.5563 0.5106 0.5470 0.3272 0.3801 0.3640
𝑘-NN (Kusiak and Zhang, 2010) 0.2149 0.2181 0.2488 0.4101 0.4781 0.6435 0.5563 0.5083 0.5520 0.3034 0.3547 0.3473
RF (Lahouar and Slama, 2017) 0.2128 0.2159 0.2460 0.4021 0.4732 0.6332 0.5478 0.5006 0.5423 0.3014 0.3464 0.3410

RMSE MLP (Velo et al., 2014) 0.2248 0.2308 0.2489 0.4033 0.4668 0.6242 0.5457 0.5008 0.5310 0.3074 0.3453 0.3302
LSTM (Kisvari et al., 2021) 0.2238 0.2284 0.2461 0.4047 0.4658 0.6256 0.5461 0.5026 0.5350 0.3060 0.3429 0.3362
CNN (Harbola and Coors, 2019) 0.2253 0.2299 0.2474 0.4144 0.4799 0.6479 0.5544 0.5132 0.5432 0.3179 0.3592 0.3429
CNN-LSTM (Shen et al., 2022) 0.2189 0.2173 0.2416 0.3946 0.4618 0.6177 0.5383 0.4956 0.5262 0.2972 0.3460 0.3371
LLConvLSTM 0.2081 0.2085 0.2161 0.3458 0.3855 0.4981 0.4361 0.3975 0.4274 0.2687 0.3064 0.2994

Naive Persistence (Potter and Negnevitsky, 2006) 0.9980 0.9971 0.9965 0.9850 0.9808 0.9620 0.9639 0.9740 0.9712 0.9907 0.9901 0.9944
GBRT (Liao et al., 2021) 0.9980 0.9973 0.9967 0.9864 0.9821 0.9645 0.9660 0.9758 0.9732 0.9916 0.9904 0.9945
𝑘-NN (Kusiak and Zhang, 2010) 0.9986 0.9980 0.9972 0.9873 0.9819 0.9641 0.9660 0.9761 0.9727 0.9928 0.9917 0.9950
RF (Lahouar and Slama, 2017) 0.9986 0.9980 0.9973 0.9878 0.9823 0.9653 0.9671 0.9768 0.9737 0.9929 0.9920 0.9952

R2 MLP (Velo et al., 2014) 0.9985 0.9977 0.9972 0.9877 0.9828 0.9663 0.9673 0.9768 0.9748 0.9926 0.9921 0.9955
LSTM (Kisvari et al., 2021) 0.9985 0.9978 0.9973 0.9876 0.9828 0.9661 0.9673 0.9766 0.9744 0.9927 0.9922 0.9953
CNN (Harbola and Coors, 2019) 0.9985 0.9978 0.9972 0.9870 0.9818 0.9636 0.9663 0.9756 0.9736 0.9921 0.9914 0.9952
CNN-LSTM (Shen et al., 2022) 0.9985 0.9980 0.9974 0.9882 0.9831 0.9670 0.9682 0.9773 0.9752 0.9931 0.9921 0.9953
LLConvLSTM 0.9987 0.9982 0.9979 0.9910 0.9882 0.9785 0.9791 0.9854 0.9837 0.9943 0.9938 0.9963
Table 5
Comparison of LLConvLSTM and other methods for two-step-ahead prediction in the 12 months verification set. Best results are shown in bold.

Metric Method Two-step-ahead

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Naive Persistence (Potter and Negnevitsky, 2006) 0.3197 0.3114 0.3298 0.4668 0.5041 0.6433 0.5756 0.5279 0.5522 0.3806 0.4060 0.3500
GBRT (Liao et al., 2021) 0.3207 0.3065 0.3252 0.4489 0.4893 0.6220 0.5584 0.5147 0.5343 0.3678 0.4008 0.3475
𝑘-NN (Kusiak and Zhang, 2010) 0.2605 0.2488 0.2872 0.4092 0.4810 0.6165 0.5492 0.5095 0.5149 0.3247 0.3400 0.2880
RF (Lahouar and Slama, 2017) 0.2595 0.2474 0.2848 0.4066 0.4768 0.6103 0.5437 0.5042 0.5101 0.3218 0.3356 0.2850

MAE MLP (Velo et al., 2014) 0.2915 0.2803 0.2981 0.4173 0.4722 0.5997 0.5417 0.5044 0.5067 0.3406 0.3561 0.3100
LSTM (Kisvari et al., 2021) 0.2944 0.2827 0.2986 0.4198 0.4725 0.6050 0.5415 0.5044 0.5112 0.3420 0.3679 0.3191
CNN (Harbola and Coors, 2019) 0.3026 0.2906 0.3104 0.4374 0.4841 0.6205 0.5546 0.5110 0.5266 0.3553 0.3797 0.3311
CNN-LSTM (Shen et al., 2022) 0.2656 0.2532 0.2803 0.4006 0.4618 0.5915 0.5290 0.4925 0.4989 0.3205 0.3417 0.2897
LLConvLSTM 0.2528 0.2380 0.2543 0.3630 0.3970 0.5061 0.4403 0.4099 0.4315 0.2944 0.3161 0.2826

Naive Persistence (Potter and Negnevitsky, 2006) 0.2193 0.2198 0.2354 0.5501 0.5897 1.0507 0.8158 0.6894 0.8174 0.3368 0.4207 0.3783
GBRT (Liao et al., 2021) 0.2145 0.2073 0.2275 0.4970 0.5522 0.9727 0.7656 0.6448 0.7536 0.3087 0.4032 0.3628
𝑘-NN (Kusiak and Zhang, 2010) 0.1661 0.1643 0.2040 0.4637 0.5701 0.9858 0.7731 0.6612 0.7613 0.2764 0.3483 0.3240
RF (Lahouar and Slama, 2017) 0.1651 0.1621 0.2005 0.4553 0.5568 0.9649 0.7521 0.6456 0.7522 0.2703 0.3400 0.3204

MSE MLP (Velo et al., 2014) 0.1823 0.1763 0.1984 0.4535 0.5290 0.9246 0.7366 0.6255 0.7089 0.2706 0.3513 0.3192
LSTM (Kisvari et al., 2021) 0.1851 0.1797 0.1994 0.4640 0.5364 0.9510 0.7489 0.6388 0.7279 0.2772 0.3606 0.3313
CNN (Harbola and Coors, 2019) 0.1921 0.1911 0.2094 0.5067 0.5732 1.0290 0.7884 0.6706 0.7854 0.3041 0.3822 0.3544
CNN-LSTM (Shen et al., 2022) 0.1641 0.1614 0.1881 0.4407 0.5211 0.9067 0.7206 0.6198 0.7055 0.2606 0.3320 0.3034
LLConvLSTM 0.1406 0.1381 0.1509 0.3539 0.3995 0.6792 0.5171 0.4347 0.5425 0.2136 0.2700 0.2891

Naive Persistence (Potter and Negnevitsky, 2006) 0.4683 0.4688 0.4852 0.7417 0.7679 1.0250 0.9032 0.8303 0.9041 0.5803 0.6486 0.6151
GBRT (Liao et al., 2021) 0.4631 0.4553 0.4769 0.7050 0.7431 0.9862 0.8750 0.8030 0.8681 0.5556 0.6350 0.6023
𝑘-NN (Kusiak and Zhang, 2010) 0.4076 0.4053 0.4517 0.6809 0.7550 0.9929 0.8793 0.8131 0.8725 0.5257 0.5901 0.5692
RF (Lahouar and Slama, 2017) 0.4063 0.4026 0.4478 0.6747 0.7462 0.9823 0.8672 0.8035 0.8673 0.5199 0.5831 0.5660

RMSE MLP (Velo et al., 2014) 0.4270 0.4199 0.4454 0.6734 0.7273 0.9616 0.8582 0.7909 0.8420 0.5202 0.5927 0.5649
LSTM (Kisvari et al., 2021) 0.4302 0.4239 0.4465 0.6812 0.7324 0.9752 0.8654 0.7992 0.8532 0.5265 0.6005 0.5756
CNN (Harbola and Coors, 2019) 0.4383 0.4371 0.4576 0.7118 0.7571 1.0144 0.8879 0.8189 0.8862 0.5514 0.6182 0.5953
CNN-LSTM (Shen et al., 2022) 0.4051 0.4017 0.4337 0.6639 0.7219 0.9522 0.8489 0.7873 0.8399 0.5105 0.5762 0.5509
LLConvLSTM 0.3750 0.3716 0.3885 0.5949 0.6320 0.8241 0.7191 0.6593 0.7366 0.4622 0.5196 0.5377

Naive Persistence (Potter and Negnevitsky, 2006) 0.9934 0.9907 0.9894 0.9585 0.9533 0.9090 0.9105 0.9361 0.9269 0.9736 0.9721 0.9844
GBRT (Liao et al., 2021) 0.9935 0.9912 0.9898 0.9625 0.9563 0.9157 0.9160 0.9403 0.9326 0.9758 0.9733 0.9851
𝑘-NN (Kusiak and Zhang, 2010) 0.9950 0.9931 0.9908 0.9650 0.9549 0.9146 0.9152 0.9388 0.9319 0.9784 0.9769 0.9867
RF (Lahouar and Slama, 2017) 0.9950 0.9931 0.9910 0.9656 0.9559 0.9164 0.9175 0.9402 0.9327 0.9788 0.9775 0.9868

R2 MLP (Velo et al., 2014) 0.9945 0.9925 0.9911 0.9658 0.9581 0.9199 0.9192 0.9421 0.9366 0.9788 0.9767 0.9869
LSTM (Kisvari et al., 2021) 0.9944 0.9924 0.9910 0.9650 0.9575 0.9176 0.9178 0.9408 0.9349 0.9783 0.9761 0.9864
CNN (Harbola and Coors, 2019) 0.9942 0.9919 0.9906 0.9618 0.9546 0.9109 0.9135 0.9379 0.9298 0.9762 0.9747 0.9854
CNN-LSTM (Shen et al., 2022) 0.9950 0.9932 0.9915 0.9667 0.9588 0.9215 0.9209 0.9426 0.9369 0.9796 0.9780 0.9875
LLConvLSTM 0.9957 0.9942 0.9932 0.9733 0.9684 0.9412 0.9433 0.9597 0.9515 0.9833 0.9821 0.9881
allows the model to converge to the global minimum within appropri-
ate epoches. The learning rate ranging from 0.01 to 0.0007 resulted
in stable training and validation losses for the model. We conducted
experiments by adjusting the learning rate and the results are presented
in Table 8. From Table 8, it is evident that evaluation metrics, such as
MAE, MSE, RMSE and R2, are affected by the learning rate. To sum up,
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we selected the optimal learning rate of 0.001 for the proposed method.
4.5. Ablation experiments

The ablation experiment verifies the validity of RDCM and DCAM
in Table 9. For the benchmark model without RDCM and DCAM,
its future three-step predictions reached 0.1491, 0.3868, and 0.6550,
respectively. For the model with the introduction of RDCM, the MSE

is decreased by 12.81%, 6.95% and 6.53% respectively. Meanwhile,
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Table 6
Comparison of LLConvLSTM and other methods for three-step-ahead prediction in the 12 months verification set. Best results are shown in bold.

Metric Method Three-step-ahead

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Naive Persistence (Potter and Negnevitsky, 2006) 0.4476 0.4379 0.4546 0.6378 0.6647 0.8382 0.7539 0.6894 0.7318 0.5252 0.5635 0.4859
GBRT (Liao et al., 2021) 0.4509 0.4351 0.4504 0.6166 0.6467 0.8107 0.7322 0.6741 0.7082 0.5118 0.5566 0.4824
𝑘-NN (Kusiak and Zhang, 2010) 0.3841 0.3700 0.4138 0.5762 0.6450 0.8137 0.7306 0.6788 0.6949 0.4676 0.4909 0.4184
RF (Lahouar and Slama, 2017) 0.3834 0.3690 0.4105 0.5734 0.6396 0.8054 0.7233 0.6725 0.6879 0.4635 0.4860 0.4149

MAE MLP (Velo et al., 2014) 0.3961 0.3877 0.4077 0.5781 0.6261 0.7902 0.7138 0.6609 0.6805 0.4720 0.4936 0.4199
LSTM (Kisvari et al., 2021) 0.4106 0.3967 0.4139 0.5775 0.6274 0.7933 0.7130 0.6623 0.6834 0.4759 0.5101 0.4415
CNN (Harbola and Coors, 2019) 0.4389 0.4254 0.4412 0.6146 0.6488 0.8195 0.7370 0.6776 0.7098 0.5063 0.5423 0.4739
CNN-LSTM (Shen et al., 2022) 0.3925 0.3812 0.4040 0.5663 0.6204 0.7835 0.7051 0.6562 0.6748 0.4655 0.4920 0.4198
LLConvLSTM 0.3473 0.3308 0.3527 0.4939 0.5366 0.6776 0.5909 0.5521 0.5882 0.4092 0.4344 0.3826

Naive Persistence (Potter and Negnevitsky, 2006) 0.4190 0.4171 0.4303 0.9395 0.9359 1.6358 1.2940 1.0830 1.2990 0.6001 0.7545 0.6447
GBRT (Liao et al., 2021) 0.4121 0.3977 0.4171 0.8489 0.8752 1.4929 1.2040 1.0102 1.1806 0.5565 0.7226 0.6110
𝑘-NN (Kusiak and Zhang, 2010) 0.3383 0.3295 0.3888 0.8003 0.9111 1.5141 1.2230 1.0489 1.1946 0.5117 0.6323 0.5464
RF (Lahouar and Slama, 2017) 0.3362 0.3254 0.3814 0.7879 0.8855 1.4775 1.1887 1.0230 1.1757 0.5000 0.6193 0.5367

MSE MLP (Velo et al., 2014) 0.3421 0.3397 0.3651 0.7885 0.8399 1.4355 1.1671 0.9905 1.1267 0.4951 0.6131 0.5174
LSTM (Kisvari et al., 2021) 0.3532 0.3426 0.3673 0.7965 0.8477 1.4644 1.1776 0.9997 1.1552 0.5015 0.6405 0.5553
CNN (Harbola and Coors, 2019) 0.3902 0.3844 0.4007 0.8864 0.9100 1.6065 1.2583 1.0585 1.2583 0.5600 0.7067 0.6218
CNN-LSTM (Shen et al., 2022) 0.3357 0.3284 0.3593 0.7720 0.8342 1.4219 1.1529 0.9812 1.1266 0.4874 0.6173 0.5226
LLConvLSTM 0.2594 0.2511 0.2793 0.5964 0.6558 1.0985 0.8462 0.7320 0.8983 0.3862 0.4772 0.4671

Naive Persistence (Potter and Negnevitsky, 2006) 0.6473 0.6458 0.6560 0.9693 0.9674 1.2790 1.1375 1.0407 1.1398 0.7747 0.8686 0.8029
GBRT (Liao et al., 2021) 0.6419 0.6306 0.6458 0.9214 0.9355 1.2219 1.0973 1.0051 1.0866 0.7460 0.8500 0.7816
𝑘-NN (Kusiak and Zhang, 2010) 0.5816 0.5740 0.6235 0.8946 0.9545 1.2305 1.1059 1.0242 1.0930 0.7154 0.7951 0.7392
RF (Lahouar and Slama, 2017) 0.5798 0.5704 0.6175 0.8876 0.9410 1.2155 1.0903 1.0114 1.0843 0.7071 0.7870 0.7326

RMSE MLP (Velo et al., 2014) 0.5849 0.5828 0.6042 0.8880 0.9165 1.1981 1.0803 0.9952 1.0615 0.7037 0.7830 0.7193
LSTM (Kisvari et al., 2021) 0.5943 0.5853 0.6061 0.8924 0.9207 1.2101 1.0852 0.9999 1.0748 0.7082 0.8003 0.7452
CNN (Harbola and Coors, 2019) 0.6247 0.6200 0.6330 0.9415 0.9539 1.2675 1.1217 1.0288 1.1218 0.7483 0.8406 0.7885
CNN-LSTM (Shen et al., 2022) 0.5794 0.5731 0.5994 0.8786 0.9133 1.1924 1.0737 0.9906 1.0614 0.6982 0.7857 0.7229
LLConvLSTM 0.5094 0.5011 0.5285 0.7723 0.8098 1.0481 0.9199 0.8556 0.9478 0.6215 0.6908 0.6835

Naive Persistence (Potter and Negnevitsky, 2006) 0.9873 0.9824 0.9806 0.9291 0.9259 0.8583 0.8580 0.8997 0.8838 0.9528 0.9500 0.9734
GBRT (Liao et al., 2021) 0.9875 0.9832 0.9812 0.9359 0.9307 0.8707 0.8679 0.9064 0.8944 0.9564 0.9521 0.9748
𝑘-NN (Kusiak and Zhang, 2010) 0.9898 0.9861 0.9825 0.9396 0.9279 0.8689 0.8658 0.9028 0.8932 0.9599 0.9581 0.9775
RF (Lahouar and Slama, 2017) 0.9898 0.9862 0.9828 0.9405 0.9299 0.8720 0.8696 0.9052 0.8949 0.9609 0.9589 0.9779

R2 MLP (Velo et al., 2014) 0.9896 0.9856 0.9836 0.9405 0.9335 0.8757 0.8719 0.9083 0.8992 0.9612 0.9593 0.9787
LSTM (Kisvari et al., 2021) 0.9893 0.9855 0.9835 0.9399 0.9329 0.8732 0.8708 0.9074 0.8967 0.9607 0.9575 0.9771
CNN (Harbola and Coors, 2019) 0.9882 0.9837 0.9820 0.9331 0.9280 0.8608 0.8619 0.9020 0.8875 0.9562 0.9531 0.9744
CNN-LSTM (Shen et al., 2022) 0.9898 0.9861 0.9838 0.9417 0.9340 0.8768 0.8735 0.9091 0.8992 0.9618 0.9591 0.9785
LLConvLSTM 0.9921 0.9894 0.9874 0.9550 0.9481 0.9049 0.9071 0.9322 0.9197 0.9698 0.9684 0.9808
Table 7
The experimental results of our proposed method in different time steps. Best results are shown in bold.

Time step One-step-ahead

MAE MSE RMSE R2

3 0.1915 0.1201 0.3466 0.9945
6 0.1919 0.1199 0.3463 0.9948
9 0.1925 0.1201 0.3466 0.9945
Table 8
The experimental results of our proposed method in different learning rates. Best results are shown in bold.

Learning rate One-step-ahead

MAE MSE RMSE R2

0.01 0.2056 0.1403 0.3746 0.9939
0.005 0.2048 0.1330 0.3647 0.9942
0.0025 0.1960 0.1247 0.3531 0.9946
0.002 0.1932 0.1214 0.3484 0.9947
0.001 0.1919 0.1199 0.3463 0.9945
0.0009 0.1988 0.1241 0.3523 0.9946
0.0008 0.2049 0.1270 0.3564 0.9941
0.0007 0.2109 0.1355 0.3681 0.9941
Table 9
Comparison of predictive values of different modules. Best results are shown in bold.

Method One-step-ahead Two-step-ahead Three-step-ahead

MAE MSE RMSE R2 MAE MSE RMSE R2 MAE MSE RMSE R2

ConvLSTM 0.2126 0.1491 0.3862 0.9932 0.3675 0.3868 0.6220 0.9820 0.5068 0.6550 0.8093 0.9691
ConvLSTM-RDCM 0.2009 0.1300 0.3606 0.9940 0.3551 0.3599 0.5999 0.9833 0.4881 0.6122 0.7824 0.9714
ConvLSTM-DCAM 0.1947 0.1257 0.3546 0.9942 0.3524 0.3556 0.5963 0.9836 0.4829 0.5982 0.7734 0.9719
LLConvLSTM 0.1919 0.1199 0.3463 0.9945 0.3492 0.3446 0.5870 0.9839 0.4752 0.5798 0.7614 0.9729
l
r
t

the model with the introduction of DCAM is decreased by MSE by
5.69%, 8.07% and 8.67% respectively. Introducing either module also
educes the MAE and RMSE. It is demonstrated that RDCM and DCAM
utperform the benchmark model from the perspective of local and
14

s

ong-range spatial correlations focusing on wind speed information,
espectively. With the simultaneous introduction of RDCM and DCAM,
he MSE of the proposed approach are 0.1199, 0.3446 and 0.5798 re-

pectively. Compared with the benchmark model, the MSE are reduced
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by 19.58%, 10.91% and 11.48% respectively. Similarly, the proposed
approach outperforms the benchmark model in other indexes.

The results of ablation experiments indicate that models with the
simultaneous introduction of RDCM and DCAM can significantly im-
prove the accuracy of wind speed prediction. It is mainly because the
local and long-range spatial features extracted from the original spatial
correlations via the ConvLSTM encoder–decoder structure are not ob-
vious. The importance of the LLConvLSTM model for extracting local
and long-range spatial correlations to improve wind speed prediction
is further demonstrated.

5. Conclusions

With the ever-increasing popularity of wind power generation, im-
proving the accuracy of wind speed prediction is extremely critical for
the operation and maintenance of wind power grid-connected systems.
In this study, a novel ConvLSTM multi-step spatiotemporal wind speed
prediction approach, namely, LLConvLSTM, is proposed to predict wind
speed and its prediction performance is verified. The model adequately
incorporates spatiotemporal information to improve the accuracy of
wind speed forecasting. In particular, ConvLSTM encoder–decoder ar-
chitecture is designed to extract spatiotemporal wind speed information
for achieving end-to-end prediction. RDCM is applied to accurately
characterize the local spatial correlations in the wind speed flows.
DCAM enhances the capability to sense long-range spatial correlations
in the wind speed flows. Extensive experimental validations are carried
out on wind speed data from 253 virtual wind turbines. LLConvLSTM
outperforms other existing models in all four evaluation metrics (MAE,
SE, RMSE, and R2) in one-step-ahead, two-step-ahead, and three-

tep-ahead prediction over the whole year and each month. MSE of
he proposed method is reduced by 40.91%, 34.70% and 33.51%
espectively compared with Naive Persistence. Moreover, ablation ex-
eriments further verified the validity of designed components in the
roposed method. Hyperparameters such as the time step and learning
ate are also investigated.

This study cleverly utilized information from wind turbines located
t regular positions to construct feature maps, enabling modeling the
patialtemporal correlations of wind speed flows. However, the exist-
ng method have limitations in dealing with turbines distributed in
xtremely irregular and scattered locations. Moreover, long-term wind
peed prediction has not been considered. As one of future endeavor, a
ervasive method will be designed to construct feature maps that can
andle turbine data at arbitrary locations. This method aims to capture
ore comprehensive turbine information, thereby further improving

he accuracy of spatialtemporal wind speed prediction. Secondly, in
he current research field of wind speed prediction, models based on
ong-term forecasting (Malhan and Mittal, 2022; Duan et al., 2022)
ave shown the capability to accurately achieve multi-step wind speed
rediction. Due to the influence of climate and seasonal variations,
ccurate long-term wind speed prediction (Cai et al., 2023; Ran et al.,
023) becomes a challenging task. Precise long-term forecasting is
qually crucial for the planning and operation of the wind energy
ndustry, facilitating the advancement and application of sustainable
nergy, particularly in the context of large-scale grid-connected wind
ower implementation. This study specifically examines wind speed
rediction for one-step-ahead, two-step-ahead, and three-step-ahead.
ased on the proposed method, another future work will develop
odules dedicated to long-term forecasting. These modules aim to

nhance the accuracy of wind speed predictions over longer time scales.
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